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1. Introduction

It has long been observed that interface contamination modifies
flow around bubbles or drops in relative motion inside a fluid. The
so-called stagnant-cap model (Griffith, 1962) has been widely used
to describe flow around contaminated bubbles. It assumes that
surface active agents tend to accumulate at the rear of the bubble,
forming a cap with an immobile surface, while the rest of the bub-
ble surface remains mobile (Fig. 1). The magnitude of contamina-
tion is described by the polar angle hcap of the spherical
coordinate system having the z axis coinciding with the direction
of the relative motion of the bubble or drop in the fluid. This model
is in agreement with experimental observations of several authors
(Savic, 1953; Garner and Skelland, 1955; Elzinga and Banchero;
1961; Griffith 1962; Horton et al., 1965; Huang and Kintner,
1969; Beitel and Heideger, 1971) who found the formation of a
stagnant cap at the rear of a drop or a bubble contaminated with
slightly soluble surfactant (high Peclet number). The case of creep-
ing flow (Stokes flow) past bubbles with stagnant cap has been
investigated by several authors (Savic, 1953; Davis and Acrivos,
1966; Harper, 1973, 1982). The problem was generalized by Sadhal
and Johnson (1983) to include both drops and bubbles. In their
study, steady creeping flow past a viscous fluid sphere partially
coated with thin films was examined analytically. The solution
yields the following expression for the drag coefficient of a viscous
fluid sphere:
ll rights reserved.
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It is defined from the force component FD applied on the particle
along the direction of relative motion (CD ¼ 2FD=ðpa2qcU2

1Þ). U1
is the relative velocity of the continuous phase far from the particle
and a is its radius. The drag coefficient varies with the fluid particle
Reynolds number Re = 2aqcU1/lc characterizing the flow in the
continuous phase. qc and lc are the density and dynamic viscosity
of the fluid forming the continuous phase, respectively, whereas
qd and ld denote the corresponding quantities in the dispersed
phase. The quantity j in (1) is the viscosity ratio j = ldlc.

The limiting case of a rigid particle is obtained when hcap = 0 and
j ?1, and the corresponding drag coefficient is denoted Crigid

D . The
effect of contamination of the interface is cancelled when hcap = p,
and the corresponding drag coefficient is denoted Cmobile

D . Following
Sadhal and Johnson (1983), the normalized drag coefficient is
introduced

C�D ¼
CD � Cmobile

D

Crigid
D � Cmobile

D

¼ 1
2p

2ðp� hcapÞ þ sinðhcapÞ þ sinð2hcapÞ �
1
3

sinð3hcapÞ
� �

: ð2Þ

An analytical solution is found for Re ? 0 because the non-linear
inertia terms in the Navier–Stokes equations vanish. The analytical
solution of Sadhal and Johnson (1983) recovers the steady creeping
flow solution past a rigid sphere first determined by Stokes (1851)
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Table 1
Comparison of the present results for drag coefficient with the Sadhal and Johnson
analytical solution for Re = 0.1 and different viscosity ratios (1: Sadhal & Johnson, 2:
Present results).

hcap j = 0 j = 1 j = 10

1 2 1 2 1 2

0 240–00 244.55 240.00 246.89 240.00 242.44
64 233.91 237.96 236.95 243.03 239.94 241.60
90 216.97 220.24 228.48 233.13 239.79 239.97
124 182.76 185.20 211.24 215.51 239.44 236.62
180 160.00 161.99 200.00 205.55 239.20 235.16

θcap

Stagnant Mobile

U∞

θcap

Stagnant Mobile

U∞

Fig. 1. Stagnant cap model.
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CD ¼
24
Re

; ð3Þ

and the Hadamard (1911) and Rybczynski (1911) solution for stea-
dy creeping flow past a fluid sphere

CD ¼
8

Re
2þ 3j
1þ j

� �
: ð4Þ

The creeping flow solution is only valid for an asymptotically small
Reynolds number, a condition which is in general admitted to cor-
respond to Re < 0.1. This paper presents the results of a numerical
study aimed at considering the effect of contamination on the drag
coefficient applied on bubbles or drops for a higher Reynolds range
Re < 400. This upper limit was chosen, considering that flow is
eventually non-axisymmetric around a rigid sphere at a higher Rey-
nolds number, or that the shape of an air bubble in water is no long-
er quasi-spherical. This numerical study solves the Navier–Stokes
equations inside and outside a contaminated fluid sphere.

Ignoring the effect of contamination of the interface of a bubble
or a drop, many experimental and theoretical works have been re-
ported in the literature concerning the characteristics of flow past a
bubble, a drop or a rigid sphere, with Reynolds numbers higher
than in the creeping flow case.

In the case of a rigid particle, this was considered in particular
by Rimon and Cheng (1969), Leclair et al. (1970), Dennis and Walk-
er (1971), Magnaudet et al. (1995), Alassar et al. (1999), Feng and
Michaelides (2001) and Saboni et al. (2004). The empirical correla-
tion of Clift et al. (1978),

CD ¼
24
Re
ð1þ 0:15Re0:687Þ; ð5Þ

commonly used in practical calculations involving rigid particles,
coincides with the numerical results obtained by Magnaudet et al.
(1995) with an error less than 6%.

For a fluid particle with a non-contaminated interface, the case
j = 0, which corresponds to viscous flow around a spherical bub-
ble, was studied by several authors (Brabston and Keller, 1975; Ry-
skin and Leal, 1984; Magnaudet et al., 1995; Blanco and
Magnaudet, 1995; Raymond, 1995; Saboni et al., 2004). The bound-
ary layer approximation used by Moore (1963) leads to

CD ¼
48
Re

1� 2:21Re�
1
2

� �
: ð6Þ

The drag values given by this formula coincide very well with
those calculated numerically by Magnaudet et al. (1995) for
Re > 50. For Re < 50, a correlation based on the best fitting of these
numerical results was proposed by Magnaudet et al. (1995)

CD ¼
16
Re

1þ 0:15Re
1
2

� �
: ð7Þ

Solving the Navier–Stokes equations for intermediate viscosity ra-
tios requires solving the coupled flows inside and outside the fluid
sphere, and because of this only a few works have been published.
Dispersed systems with intermediate viscosity ratios are usually
found in industrial processes: an example is liquid–liquid extrac-
tion, in which the viscosity ratio may vary between 0.05 and 10.

Abdel-Alim and Hamielec (1975) used a finite-difference meth-
od to calculate steady motion for Re 6 50 and a viscosity ratio
j 6 1.4. This work was extended to higher Reynolds numbers (up
to 200) by Rivkind and Ryskin (1976) and Rivkind et al. (1976). Oli-
ver and Chung (1987) used a different method (series truncation
with a cubic finite-element method) for moderate Reynolds num-
bers Re 6 50. Dandy and Leal (1989) studied numerically the buoy-
ancy driven motion of a deformable drop in an unbounded fluid for
Re 6 300. Feng and Michaelides (2001), Saboni and Alexandrova
(2002) and Saboni et al. (2004) used a finite-difference method
to calculate the flow field inside and outside the fluid sphere. The
results provide information on the two-flow field and values for
the drag coefficients of viscous spheres over the entire viscosity ra-
tio range. Saboni et al. (2004) proposed a predictive equation for
drag coefficients covering Reynolds numbers in the range
0.01 6 Re 6 400 and viscosity ratios from 0 to 1000.

The effect of contamination of the interface was investigated for
higher Reynolds numbers by Cuenot et al. (1997), considering the
transient change in flow around a spherical bubble rising in a li-
quid contaminated by a weakly soluble surfactant. The results con-
firm the validity of the stagnant-cap model for describing flow
around a bubble contaminated by slightly soluble surfactants.
McLaughlin (1996) considered the effect of an insoluble surfactant
on flow around a deforming bubble. The stagnant-cap model was
also used to perform numerical simulations of mass transfer
around a bubble in the presence of surfactants in the liquid phase
(Ponoth and McLaughlin, 2000; Vasconcelos et al., 2002; Dani,
2007; Madhavi et al., 2007).

Recent numerical and theoretical studies have investigated of
the instability of uniform flow past a sphere (Kim and Pearlstein,
1990; Natarajan and Acrivos, 1993; Johnson and Patel, 1999). The
flow becomes non-axisymmetric around Rec1 = 210 but remains
steady. The transition to the 3D unsteady periodic regime is
reached at a critical Reynolds number Rec2 = 272 (Natarajan and
Acrivos, 1993; Johnson and Patel, 1999). For Re > 200, the 3D
numerical simulations give more precise results (and details of
the flow) than the forced axisymmetric flow. However the changes
in the drag coefficient are not important. For instance, the 3D
numerical results of Johnson and Patel (1999) gives a value for
CD of 0.656 at Re = 300 with an oscillation amplitude of
3.5 � 10�3. Tomboulides (1993) found CD = 0.671 with an oscilla-
tion amplitude of 2.8 � 10�3, while the experimental data of Roos
and Willmarth gives an interpolated value for CD of 0.629 at
Re = 300. These values are close to those obtained from the 2D sim-
ulations which are included between 0.63 and 0.65 (Leclair et al.,
1970; Magnaudet et al., 1995; Feng and Michaelides, 2001; Saboni
et al., 2004).

The bubbles rising trajectories are much dependent on the bub-
ble size and on the properties of the liquid (Clift et al., 1978). For
example, in a pure water system, bubbles following a rectilinear
path change to follow a zigzag path when their equivalent



Table 2
Comparison of the present results for drag coefficient with other numerical works in
the case of a bubble (k = 0).

Re hcap Cuenot
et al. (1997)

Takemura and
Yabe (1999)

Sarrot
(2006)

Dani
(2007)

Present
results

10 0 – 4.22 4.33 4.33 4.42
64 – 4.19 – 4.32 4.33
90 – 3.76 3.80 3.81 3.86

124 – 2.88 – 2.91 2.92
180 – 2.37 2.43 2.44 2.47

100 0 1.09 1.09 1.10 1.09 1.09
64 – 1.02 – 1.07 1.07
90 0.91 0.83 0.89 0.85 0.88

124 – 0.51 – 0.52 0.50
180 0.37 0.38 0.37 0.38 0.37
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Fig. 2. Stream function contours, inside and outside a fluid
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diameter exceeds 1.8 mm (Re � 600) (Duineveld, 1995). However,
a slight contamination of the water may critically affect the behav-
ior of the bubbles and dramatically lower the Reynolds number at
which a zigzag trajectory is produced.

The paper presents the results of a parametric numerical study
in which the drag coefficients applied to a spherical fluid volume in
steady motion were computed over the ranges 0.1 < Re < 400 and
0 < j < 10 for seven different values of the polar angle hcap charac-
terizing the extent of the rigid cap at the rear of the bubble or drop
(hcap = 0�, 30�, 64�, 90�, 124�, 150� and 180�). The paper is divided
up as follows. The governing equations and the method of solution
are described in Sections 2 and 3 presents the results of the numer-
ical computations. For Re = 0.1, the drag coefficient values com-
puted by our model are first compared with the analytical results
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of Sadhal and Johnson (1983). The results obtained for higher Rey-
nolds numbers (up to Re = 400) are then analyzed in terms of maps
of the stream function contours inside and outside the fluid parti-
cle, and in terms of variations in the tangential velocity and vortic-
ity at the surface of the sphere. Lastly, the dependence of the drag
coefficient on the polar angle hcap of the rigid cap is discussed using
the normalized drag coefficient C�D (Eq. (2)) introduced by Sadhal
and Johnson (1983) with the drag coefficient Cmobile

D given by Saboni
et al. (2004) for a non-contaminated fluid particle

Cmobile
D ¼

j 24
Re þ 4

Re0:36

� �
þ 15

Re0:82 � 0:02 jRe0:5

1þj

� �
Re2 þ 40 3jþ2

Re þ 15jþ 10

ð1þ jÞð5þ 0:95Re2Þ
;

ð8Þ
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and the drag coefficient Crigid
D deduced from this formula for an

asymptotically large value of j, i.e.

Crigid
D ¼ 24Re2 þ 4Re2:64 þ 15Reþ 120

Reð5þ 0:95Re2Þ
: ð9Þ
2. Governing equations

Consider a contaminated fluid sphere of radius a moving with
uniform velocity U1 in another immiscible fluid of infinite extent.
The kinematic viscosity is denoted m, using subscripts d and c to re-
fer to the dispersed and continuous phases, respectively. The Rey-
nolds number Re = 2aU1/mc is sufficiently low to assume that the
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flow is axisymmetric in the two phases, and the Navier–Stokes
equations are written in terms of the stream function and vorticity
(w and x) in the r and h spherical coordinates system (Clift et al.,
1978; Sadhal et al., 1996).

Inside the spherical fluid particle (dispersed phase), the equa-
tions to be solved are

E2wd ¼ xdr sin h; ð10Þ
lc

ld

qd

qc

Re
2

@wd

@r
@

@h
xd

r sin h

� �
� @wd

@h
@

@r
xd

r sin h

� �� 	
sin h ¼ E2ðxdr sin hÞ;

ð11Þ

where E2 ¼ @2

@r2 þ sin h
r2

@
@h

1
sin h

@
@h


 �
.

Outside the fluid sphere, the radial coordinate r is transformed
for numerical reasons, introducing the logarithmic radial coordi-
nate z (r = ez). The above set of equations is modified to
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E2wc ¼ xcez sin h; ð12Þ
Re
2
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� �� 	
ez sin h ¼ e2zE2ðxcez sin hÞ:

ð13Þ

The dimensionless quantities are related to the dimensional vari-
ables (denoted with a prime) by r = r0/a, x = x0a/U1 and w = w0/
(U1a2).

The dimensionless radial and tangential velocities are deter-
mined from the dimensionless stream function w by

u ¼ � 1
r2 sin h

@w
@h

; v ¼ 1
r sin h

@w
@r
: ð14Þ

The two systems of equations are solved in the continuous and dis-
persed phases. The effect of interface contamination is taken into
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account solely by the value of the polar angle hcap of the rigid cap at
the rear of the particle through the associated boundary conditions:

(i) Far from the fluid sphere (z = z1), undisturbed parallel flow
is assumed: xc = 0; wc = 0.5e2zsin2 h.

(ii) Along the axis of symmetry (h = 0, p): wc = 0, xc = 0, wd = 0,
xd = 0.

(iii) Across the mobile part of the interface (h < hcap and z = 0 or
r = 1), the following relations express, respectively, negligi-
ble material transfer, continuity of the tangential velocity,
and continuity of the tangential stress
0

0

0

0

u
θ

Fig. 5. T
stagnan
wc ¼ 0; wd ¼ 0;
@wc

@z
¼ @wd

@r
;

lc

ld

@2wc

@z2 � 3
@wc

@z

 !
¼ @2wd

@r2 � 2
@wd

@r

 !
:

(iv) On the surface of the rigid cap (h > hcap and z = 0 or r = 1), and
the tangential velocity is zero
wc ¼ 0; wd ¼ 0;
@wc

@z
¼ @wd

@r
¼ 0
Eqs. (10)–(13) subjected to the boundary conditions (i)–(iv) are
solved simultaneously to obtain stream-function and vorticity val-
ues. Once stream function is known, the velocities are then deter-
mined from (14).

The finite-difference method is used in the present study. While
detailed discussions on the accuracy of the solution procedure em-
ployed are available elsewhere (Saboni et al., 2004; Saboni et al.,
2007), the reliability and accuracy of the diffusion–convection
equation for the solution is established here by comparing the
present values with the literature values in the case of a spherical
contaminated bubble.

3. Results and discussion

The method of solution is first tested by considering the limiting
case of a bubble (j = 0). Computations of the drag coefficient are
compared in Table 1 with the Sadhal & Johnson analytical solution.
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In the case of the different stagnant cap angles (hcap = 180�, 124�,
90�, 64� and 0), it shows good agreement between our results
and the creeping flow analytical solution (Re = 0.1). The case
hcap = 180� corresponds to uniform flow past a sphere with fully
mobile interface (air bubble in water). The values of the drag coef-
ficient computed are in good agreement with those of Brabston
and Keller (1975) and Ryskin and Leal (1984). The case hcap = 0 cor-
responds to uniform flow past a rigid sphere with an immobile
interface. Our results agree well with those of Leclair et al.
(1970), Alassar et al. (1999) and Feng and Michaelides (2001).

In the case of the bubble (j = 0) and higher Reynolds numbers,
the drag coefficients computed by our numerical model are com-
pared in Table 2 with the results of Cuenot et al. (1997), Takemura
and Yabe (1999), Sarrot (2006) and Dani (2007). Good agreement is
found for the two Reynolds numbers considered (Re = 10 and
Re = 100) and the different stagnant cap angles (hcap = 180�, 124�,
90�, 64� and 0). An analysis of Table 2 indicates in a qualitative
manner that the variation in drag coefficient with the polar angle
hcap of the spherical cap occurs mainly when this angle is between
64� and 124�. When 0 < hcap < 64�, the drag coefficient remains
approximately the same as in the case of the rigid sphere. Similarly,
the drag coefficient for non-contaminated conditions is approxi-
mately recovered for 124� < hcap < 180�.

This qualitative interpretation of drag coefficient variations is
illustrated in Fig. 2, which shows streamline contours inside and
outside a fluid sphere for Re = 50, j = 1 and the different stagnant
cap angles. At high stagnant cap angles (hcap = 180� and 124�), it ap-
pears that internal circulation is sufficiently rapid to prevent flow
separation and the formation of a trailing vortex. Slight asymmetry
is observed between upstream and downstream regions near the
sphere. With low stagnant cap angles the contour line plots show
flow separation downstream of the fluid particle, which is very
similar in all cases with 0 < hcap < 90�. The effect of the angle hcap

characterizing the degree of contamination concerns mainly flow
inside the fluid particle, which has a limited effect on the drag coef-
ficient. Similar conclusions are obtained for the two Reynolds num-
bers Re = 100 and 300 (and j = 1) as shown in Figs. 3 and 4 for
different stagnant cap angles (hcap = 180, 150, 124, 90, 64, 30 and
0). Here also, a slight asymmetry about h = 90 is seen with high
0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150 180

θ
cap

=180

θ
cap

=150

θ
cap

=124

θ
cap

=90

θ
cap

=64

θ
cap

=30

u
θ

θ

Fig. 6. Tangential velocity distribution at surface of sphere for Re = 100, and
different stagnant caps.



Table 3
Effect of interface contamination on a fluid sphere drag coefficient.

Re hcap

0 30 64 90 124 150 180

j = 0.5
10 4.42 4.42 4.36 4.05 3.43 3.13 3.07
20 2.78 2.77 2.75 2.51 2.07 1.87 1.94
50 1.59 1.59 1.58 1.41 1.07 0.95 0.93

100 1.09 1.09 1.08 0.94 0.66 0.59 0.55
200 0.77 0.77 0.75 0.63 0.40 0.32 0.31
300 0.62 0.62 0.60 0.48 0.30 0.23 0.22
400 0.53 0.53 0.50 0.40 0.24 0.18 0.18
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stagnant cap angles. In Figs. 2–4, it may be seen that the eddy
length and the angle of flow separation increase with decreasing
stagnant cap angle.

The tangential velocity uh at the surface of a moving contami-
nated fluid sphere (k = 1) is plotted in Figs. 5 and 6 (for Re = 10
and 100, respectively) as a function of the angular coordinate h
for different stagnant cap angles (hcap = 180, 150, 124, 90, 64, 30
and 0). With an uncontaminated fluid sphere (hcap = 180), the
velocity is positive and reaches its maximum near the equator.
When a portion of the sphere interface is contaminated, the speed
is almost unchanged upstream of the rigid cap but it decreases
-5
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suddenly when approaching it. This sudden change is illustrated
in a complementary manner in Figs. 7 and 8, where the variation
in vorticity x at the surface of the moving contaminated fluid
sphere is plotted for the different stagnant cap angles with the
two Reynolds numbers Re = 10 and Re = 100 (and j = 1). The limit-
ing profiles for a fully contaminated sphere (hcap = 0) and non-con-
taminated sphere (hcap = 180) deserve particular attention because
the vorticity variations for the intermediate angles 0 < hcap < 180
are attached to them. With Re = 10, the vorticity variations look
similar for hcap = 0 and hcap = 180, with a maximum vorticity
around h = 60, but the vorticity is higher on the rigid sphere
(hcap = 0) than on the non-contaminated sphere (hcap = 180). At a
higher Reynolds number (Re = 100, Fig. 8), the vorticity is negative
at the rear of the rigid sphere (hcap = 0), indicating recirculation be-
hind the sphere, as observed in Fig. 3. No circulation behind the
sphere is found for Re = 10. These results are in agreement with
the literature dealing with rigid and fluid spheres. In intermediate
cases (hcap = 150, 124, 90, 64, 30), it can be seen that the vorticity
profile is similar to that of a rigid sphere on the contaminated part,
and close to that of a fluid sphere on the non-contaminated part.
The vorticity exhibits a very sharp peak at the transition between
the contaminated and non-contaminated parts of the sphere.

Table 3 summarizes the values of the drag coefficient Cd ob-
tained from our calculations for the range of parameters covered
(Re = 10–400, j = 0.5–10) and the different stagnant cap angles
j = 1
10 4.42 4.42 4.38 4.14 3.69 3.46 3.41
20 2.78 2.78 2.75 2.58 2.24 2.09 2.09
50 1.59 1.59 1.59 1.45 1.20 1.10 1.09

100 1.09 1.09 1.09 0.97 0.74 0.67 0.66
200 0.77 0.77 0.75 0.65 0.46 0.4 0.39
300 0.62 0.62 0.60 0.51 0.34 0.29 0.28
400 0.53 0.53 0.50 0.42 0.28 0.23 0.23

j = 2
10 4.42 4.42 4.40 4.24 3.94 3.80 3.76
20 2.78 2.75 2.74 2.62 2.41 2.31 2.30
50 1.59 1.59 1.59 1.50 1.33 1.27 1.26

100 1.09 1.09 1.09 1.01 0.86 0.81 0.81
200 0.77 0.77 0.77 0.69 0.55 0.51 0.50
300 0.62 0.62 0.61 0.54 0.42 0.38 0.37
400 0.53 0.53 0.51 0.45 0.34 0.31 0.30

j = 3
10 4.42 4.42 4.40 4.28 4.06 3.95 3.93
20 2.78 2.77 2.76 2.68 2.51 2.44 2.43
50 1.59 1.59 1.59 1.53 1.40 1.35 1.35

100 1.09 1.09 1.09 1.04 0.92 0.89 0.88
200 0.77 0.77 0.77 0.71 0.60 0.58 0.57
300 0.62 0.62 0.62 0.56 0.46 0.44 0.44
400 0.53 0.53 0.53 0.47 0.38 0.36 0.36

j = 10
10 4.42 4.42 4.40 4.34 4.26 4.22 4.22
20 2.78 2.78 2.78 2.75 2.69 2.67 2.67
50 1.59 1.59 1.59 1.58 1.53 1.51 1.51

100 1.09 1.09 1.09 1.08 1.04 1.03 1.03
200 0.77 0.77 0.77 0.76 0.72 0.71 0.71
300 0.62 0.62 0.62 0.61 0.57 0.57 0.57
400 0.53 0.53 0.53 0.52 0.49 0.48 0.48
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(hcap = 180, 150, 124, 90, 64, 30 and 0). As expected, the drag coef-
ficient decreases with increasing Reynolds numbers for a fixed
stagnant cap angle and a given viscosity ratio j. With a fixed Rey-
nolds number, the drag coefficient also decreases for an increasing
stagnant cap angle. The values for hcap = 180 and hcap = 0 coincide
with the drag coefficient for a rigid sphere and a clean fluid sphere,
respectively. Table 3 quantifies the qualitative observations on
Figs. 2–4 that the effect of contamination is mainly significant
when the cap angle hcap is between 64� and 124�. Indeed, the drag
coefficient is approximately the same as for the rigid sphere with
hcap < 64� and only a limited decrease is noticed for hcap = 90�. The
values are almost independent of the viscosity ratio j. It can also
be seen that the drag coefficient is approximately the same with
hcap = 150� and 180�. Increasing the viscosity ratio j is associated
with an increase in the drag coefficient, as observed in the case
of a non-contaminated fluid sphere.

Because the rigid sphere (hcap = 0) and the non-contaminated
fluid sphere (hcap = 180) cases are the reference limit cases from
which the drag coefficient deviates in the intermediate range of
cap angle hcap characterizing the degree of contamination of the
interface, the variations in drag coefficient C�D with hcap were con-
sidered. They are plotted in Fig. 9 for four different values of the
Reynolds number and varying viscosity ratios. On each figure the
variations with hcap derived analytically by Sadhal and Johnson
(1983) for an asymptotically low Reynolds number (Re ? 0) are
superimposed. As a result of definition the normalized drag coeffi-
cient is equal to unity for a completely contaminated fluid sphere
(hcap = 0) and to zero for a non-contaminated fluid sphere
(hcap = 180). While our computations closely reproduce the Sadhal
and Johnson solution at low Reynolds numbers Re = 0.1 and
Re = 10, Fig. 9 shows that the variations in normalized drag coeffi-
cient with hcap deviate increasingly from the Sadhal and Johnson
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Fig. 9. Normalized drag coefficient Cd of a fluid sphere versus cap angle hcap plotted for
The solid curve is the analytical solution by Sadhal and Johnson (1983) for an asymptot
curve as the Reynolds number or viscosity ratio are increased.
The difference between Cmobile

D and Crigid
D is reduced as much as the

viscosity ratio is increased (Table 3), and this explains the scatter
observed in Fig. 9 when using a normalized C�D.

The differences between the non-normalized CD obtained from
our computations and the CD obtained using the Sadhal and John-
son C�D, i.e.

CD ¼ C�D;Sadhal&Johnson Crigid
D � Cmobile

D

� �
þ Cmobile

D ; ð14Þ

are much less pronounced. As an example with Re = 400, j = 3 and
hcap = 124, the Sadhal and Johnson C�D and the numerical C�D are
respectively 0.284 and 0.117 while the CD given by (14) and the
numerical CD are respectively 0.36 and 0.38. Tables 4 and 5 show
that the results from Eq. (14) agree well with those obtained
numerically. The cases Re = 10 and 300 are given as an example
but it is very easy to confirm these observations with any other va-
lue Re < 400. Values of the drag coefficient given by this formula
coincide with those calculated numerically with an error of less
than 15% over the entire range of Re, j and hcap covered by our
investigation (0 < Re < 400, 0 < j < 10 and 0 < hcap < 180). It may
therefore be suggested that Eq. (14) should be used to determine
the drag coefficient for a contaminated fluid sphere in the case of
Reynolds numbers ranging between 0.01 and 400 and viscosity ra-
tios between 0 and 10.

Our simulations assume that the particle is spherical. The appli-
cability of the present correlation relies on the validity of this
hypothesis. Clift et al. proposed a general graph (based on the val-
ues of Bond, Morton, and Reynolds numbers) which predicts the
shape of bubbles and drops. The graph shows that the falling or ris-
ing bubble or drop will remain spherical for Re < 1000 when the
Bond number Bo is less than 0.3. Such condition is met for bubbles
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different Reynolds numbers Re = 0.1, 10, 100 and 400 and varying viscosity ratios j.
ically low Reynolds number (Re ? 0).



Table 5
Comparison of the present numerical results for Cd with the results from Eq. (14) for
Re = 300.

j hcap

0 30 64 90 124 150 180

0.5
Present numerical results 0.62 0.62 0.60 0.48 0.30 0.23 0.22
Eq. (14) 0.62 0.62 0.59 0.51 0.34 0.25 0.23

1
Present numerical results 0.62 0.62 0.60 0.51 0.34 0.29 0.28
Eq. (14) 0.62 0.62 0.60 0.53 0.39 0.31 0.29

2
Present numerical results 0.62 0.62 0.61 0.54 0.42 0.38 0.38
Eq. (14) 0.62 0.62 0.60 0.55 0.45 0.39 0.38

3
Present numerical results 0.62 0.62 0.62 0.56 0.46 0.44 0.44
Eq. (14) 0.62 0.62 0.61 0.57 0.49 0.45 0.43

10
Present numerical results 0.62 0.62 0.62 0.61 0.57 0.57 0.57
Eq. (14) 0.62 0.62 0.62 0.60 0.57 0.55 0.55

Table 4
Comparison of the present numerical results for Cd with the results from Eq. (14) for
Re = 10.

j hcap

0 30 64 90 124 150 180

0.5
Present numerical results 4.42 4.42 4.36 4.05 3.43 3.13 3.07
Eq. (14) 4.42 4.41 4.31 4.03 3.46 3.16 3.09
1
Present numerical results 4.42 4.42 4.36 4.14 3.69 3.46 3.41
Eq. (14) 4.42 4.41 4.34 4.18 3.70 3.47 3.42

2
Present numerical results 4.42 4.42 4.40 4.24 3.94 3.80 3.76
Eq. (14) 4.41 4.41 4.36 4.22 3.93 3.78 3.74

3
Present numerical results 4.42 4.42 4.40 4.28 4.06 3.95 3.93
Eq. (14) 4.42 4.41 4.37 4.27 4.05 3.94 3.91

10
Present numerical results 4.42 4.42 4.40 4.34 4.26 4.22 4.22
Eq. (14) 4.42 4.41 4.40 4.36 4.28 4.24 4.23
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with Re < 300. For Re < 100 and We < 0.5 (slightly deformed parti-
cle) the correlation values of the drag coefficient given by the Eq.
(8) coincide with those calculated numerically by Dandy and Leal
(with an error of less than 10%).

The correlation presented in this paper is precise in the absence
of instability (Re < 200). Its precision for Re > 200 should be
checked by 3D computations of unsteady non-axisymmetric flow.
4. Conclusions

A numerical study has been conducted to investigate the effects
of contamination on flow around a fluid sphere. This paper pre-
sents the results of a parametric numerical study in which the drag
coefficients applied to a spherical fluid volume in steady motion
were computed over the ranges 0.1 < Re < 400 and 0 < j < 10 for se-
ven different values of the polar angle hcap characterizing the ex-
tent of a rigid cap at the rear of the bubble or drop (hcap = 0�, 30�,
64�, 90�, 124�, 150� and 180�). The results show that the flow is
strongly dependent on the Reynolds number and stagnant cap an-
gle. As expected, the drag coefficient decreases with increasing
Reynolds numbers in the case of a fixed stagnant cap angle and a
given viscosity ratio j. With a fixed Reynolds number, the drag
coefficient also decreases in the case of an increasing stagnant
cap angle. To present the numerical results in an easier-to-use
form, our numerical results are correlated by an equation based
on the normalized drag coefficient derived by Sadhal and Johnson
(1983) for an asymptotically low Reynolds number (Re ? 0) and
the drag coefficients Cmobile

D and Crigid
D given by Saboni et al. (2004)

(Eqs. (8) and (9)). Values of the drag coefficient given by this for-
mula coincide with those calculated numerically with an error less
than 15% over the entire range of Re, k and hcap covered by our
investigation (0 < Re < 400, 0 < j < 10 and 0 < hcap < 180).
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